Rigorous lubrication approximation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lubrication Approximation with Prescribed Nonzero Contact Angle

We prove long{time existence for a weak solution s(t; x) 0 of the lubrication approximation @ t s + @ x (s @ 3 x s) = 0 in fs > 0g with prescribed contact angle of, say, 4 (@ x s) 2 = 1 on @fs > 0g :

متن کامل

Biorthogonal wavelet-based full-approximation schemes for the numerical solution of elasto-hydrodynamic lubrication problems

Biorthogonal wavelet-based full-approximation schemes are introduced in this paper for the numerical solution of elasto-hydrodynamic lubrication line and point contact problems. The proposed methods give higher accuracy in terms of better convergence with low computational time, which have been demonstrated through the illustrative problems.

متن کامل

Lubrication approximation for microparticles moving along parallel walls.

Lubrication expressions for the friction coefficients of a spherical particle moving in a fluid between and along two parallel solid walls are explicitly evaluated in the low-Reynolds-number regime. They are used to determine lubrication expression for the particle free motion under an ambient Poiseuille flow. The range of validity and the accuracy of the lubrication approximation are determine...

متن کامل

Justification of lubrication approximation: An application to fluid/solid interactions

We consider the stationary Stokes problem in a three-dimensional fluid domain F with non-homogeneous Dirichlet boundary conditions. We assume that this fluid domain is the complement of a bounded obstacle B in a bounded or an exterior smooth container Ω. We compute sharp asymptotics of the solution to the Stokes problem when the distance between the obstacle and the container boundary is small.

متن کامل

Rigorous uniform approximation of D-finite functions using Chebyshev expansions

A wide range of numerical methods exists for computing polynomial approximations of solutions of ordinary differential equations based on Chebyshev series expansions or Chebyshev interpolation polynomials. We consider the application of such methods in the context of rigorous computing (where we need guarantees on the accuracy of the result), and from the complexity point of view. It is well-kn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interfaces and Free Boundaries

سال: 2003

ISSN: 1463-9963

DOI: 10.4171/ifb/88